
Precessing rotating flows with additional shear: Stability analysis

A. Salhi1,2 and C. Cambon2

1Département de Physique, Faculté des Sciences de Tunis, 1060, Tunis, Tunisia
2Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, UMR 5509 CNRS, INSA, UCB, 69134 Ecully Cedex,

France
�Received 25 July 2008; revised manuscript received 27 November 2008; published 12 March 2009�

We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the
interaction between the solid-body rotation �with angular velocity �0� and the additional “precessing” Coriolis
force �with angular velocity −��0�, normal to it. A “weak” shear flow, with rate 2� of the same order of the
Poincaré “small” ratio �, is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler’s
equations in the precessing frame �the so-called admissibility conditions�. The base flow case with vertical
shear �its cross-gradient direction is aligned with the main angular velocity� corresponds to Mahalov’s �Phys.
Fluids A 5, 891 �1993�� precessing infinite cylinder base flow �ignoring boundary conditions�, while the base
flow case with horizontal shear �its cross-gradient direction is normal to both main and precessing angular
velocities� corresponds to the unbounded precessing rotating shear flow considered by Kerswell �Geophys.
Astrophys. Fluid Dyn. 72, 107 �1993��. We show that both these base flows satisfy the admissibility conditions
and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot
select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from
Poincaré’s �Bull. Astron. 27, 321 �1910�� basic state of a precessing spheroidal container, in the limit of small
�. A Rapid distortion theory �RDT� type of stability analysis is then performed for the previously mentioned
disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet’s theory, is
recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the
same for both flows at very small �, but significant differences are obtained regarding growth rates and widths
of instability bands, if larger � values, up to 0.2, are considered. Finally, both flow cases are briefly discussed
in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural
continuation of RDT.
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I. INTRODUCTION

Rotating fluids can develop specific “precession” insta-
bilities if they are subjected to an additional weak external
Coriolis force. Such instabilities were recently shown to trig-
ger a new route to turbulence with enhancement of mixing.
In addition, very promising occurrence and sustenance of
dynamo effects are expected in magnetohydrodynamics. In
this context, experimental, theoretical, and numerical studies
have been carried out in both spherical �1� and cylindrical �2�
geometries. In the latter case, the linear stability of a rotating
fluid column, with the precessing angular velocity normal to
the main one, was investigated in �3�, by means of a classical
normal mode analysis of small disturbances.

We propose in this paper to use a different approach to
linear stability: Disturbances to a simple base flow are sought
in terms of three-dimensional Fourier modes that are pas-
sively advected by this base flow; consequently they involve
a time-dependent wave vector in addition to a time-
dependent amplitude. This approach was illustrated in, e.g.,
�4,5� in the field of hydrodynamic stability, but it is also the
starting point of the rapid distortion theory �RDT�, as coined
by Batchelor and Proudman �6�, used in the turbulence com-
munity. Comparison of this RDT approach to the conven-
tional �normal mode� one is encouraged by previous “suc-
cess stories,” including elliptical flow instability �4,7,8� and
rotating flow with weak axial periodic compression �9,10�.
Directly relevant to the problem with precession and shear is

the special case of the Poincaré spheroidal container ad-
dressed by Kerswell �11�, who performed a RDT-like stabil-
ity analysis for a special case. Going back to the stability
analysis of Mahalov �3�, only the conventional normal mode
analysis was done, but it is possible to define a base flow
with constant velocity gradients, ignoring specific boundary
conditions. Both base flows, hereinafter referred to as Maha-
lov base flow �MBF� and Kerswell base flow �KBF� are ex-
act solutions of Euler equations, and can support distur-
bances in terms of advected Fourier modes. These two flows,
however, differ in their pure shear part, as we will see in Sec.
II, and this raises at least two questions, which motivate our
present study. On the one hand, is there a physical derivation
of these flows, if admissibility conditions, as we will show in
Sec. II, are not sufficient to distinguish them? On the other
hand, are there significant differences in their stability
�growth rates, widths of instability bands�?

This paper is organized as follows. In Sec. II, “linear and
extensional” base flows are introduced and discussed. RDT
equations for disturbances are derived in Sec. III, and are
exploited analytically and numerically. Sec. IV is devoted to
conclusions and perspectives.

II. EXTENSIONAL LINEAR BASE FLOWS

A. Admissibility conditions

A base flow which consists of a solid-body rotation is not
a solution of the Euler equations in the presence of an addi-
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tional Coriolis force, if the two angular velocities are not
aligned. The related gyroscopic torque, which will be subse-
quently formalized �Eq. �4�, first term�, needs to be balanced
by another velocity gradient term. Let us start with an un-
specified additional gradient matrix S, in order to determine
the necessary constraints on it that result from admissibility
conditions �following the terminology of Craik �5��. The
base flow with uniform velocity gradients, sometime called
linear and/or extensional, is therefore chosen as

Aij = �ijn�n + Sij , �1�

where �ijn is the third-order alternating �sometimes referred
to as the Levi-Cività� tensor. The flow is seen in a frame
rotating with angular velocity �c �superscript c for Coriolis�.
The admissibility conditions can be most easily seen from
the Helmholtz equation in the rotating frame �e.g., �12��,

�tW + U · �W = A · W + ��2W , �2�

for the basic absolute vorticity W=��U+2�c, or

Wi = �ijnSnj + 2�i + 2�i
c. �3�

Equation �2� reduces to a condition of zero production of
absolute vorticity, or AijWj =0, because the time derivative
�tW, advection U ·�W, and viscous term ��2W disappear
for a time-independent linear base flow. From Eqs. �1� and
�2�, the production of absolute vorticity appears to have four
distinct contributions:

AijWj = 2�ijn� j�n
c

1

+ �Sij + Sji�� j

2

+ 2Sij� j
c

3

+ � jpqSijSqp

4

.

It is now clear that the previously mentioned gyroscopic
torque is the first term in the right-hand side, and that S is
involved in all the other terms for possible balance �the ad-
missibility conditions are violated without S�. Restricting S
to a pure plane shear, the last shear-shear interaction term is
zero, so that the admissibility condition yields

2� � �c + �S + ST� · � + 2S · �c = 0 . �4�

We will consider now the case where � and �c are perpen-
dicular. Without lack of generality, the axes of the Cartesian
frame of reference can be chosen so that

� = �0,0,�0�T, �c = ��c,0,0�T, �5�

in which the superscript T means the matrix transpose. Ac-
cordingly, one easily shows that only the following base
shear flows satisfy Eq. �4�:

S = � 0 0 0

− �0 0 0

0 0 0
�, �0 0 0

0 0 − 2�c

0 0 0
�, �0 0 0

0 0 0

0 − 2�c 0
� ,

but only the last two cases are relevant for the present study,
because a plane shear, with shear rate independent of the
Coriolis force, is recovered for the first case. The last two
base flows are seen in a precessing frame, and therefore sub-
ject to a Coriolis force, which is characterized by the second
angular velocity in Eq. �5�. Choosing

�c = ��0, �6�

the Poincaré number �1,13� � could be considered as a small
parameter: It is really very small in the geophysical context
��10−7�, but significant values up to 0.2 are displayed in
typical experimental studies to trigger instabilities and turbu-
lence �1,2�. Finally, the two relevant base flows are

U = �0�0 − 1 0

1 0 0

0 − 2� 0
� · x, U = �0�0 − 1 0

1 0 − 2�

0 0 0
� · x .

�7�

They reduce to a solid-body rotation in the absence of the
Coriolis force, and the shear can be seen as generated by the
interaction between the Coriolis force and the solid-body ro-
tation.

For the first of these basic flows �hereinafter referred to as
MBF�, the streamwise direction of shear is along � �vertical
here, see Fig. 1� and the absolute vorticity W= �0,0 ,2�0�T is
not affected by the precession. In counterpart, for the second
base flow �hereinafter referred to as KBF�, it is the cross-
gradient direction of the shear that is vertical �along ��, and
an additional component of absolute vorticity W
= �4��0 ,0 ,2�0�T arises along �c.

B. Derivation of the base flows from Poincaré’s basic state at
weak precession

The Poincaré base state of a precessing spheroidal con-
tainer �13�, reconsidered by Kerswell �11�, is

U = �0�0 − 1 0

1 0 − �1 + ���
0 � 0

�x = A · x , �8�

where

Ω 0

x 3

x 2

x 1

r

ε

ϕ

0

FIG. 1. Sketch for Mahalov’s base flow.
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� =
2�1

� + 2�1 + ���3
, �9�

and � is the oblateness of the spheroidal container �r�2
+��e3 ·r�2=1 with the two-component precessional vector
�c=�0��1 ,0 ,�3�T.

It is clear that the MBF cannot be recovered from Eqs. �8�
and �9� by simply discarding �3 and choosing �=0 �circular
cylinder�. It is necessary to rotate the system of coordinates
in the plane x1-x3 in order to eliminate the nonzero compo-
nent A23 in �8�. Accordingly, in the new system of coordi-
nates �x̃1 , x̃2 , x̃3� such that

�x̃3

x̃1

x̃2
� =

1
	1 + 	2� 1 	 0

− 	 1 0

0 0 	1 + 	2 ��
x3

x1

x2
� , �10�

where 	=tan �x̃3 ,x3�ˆ , the basic velocity gradient and the pre-
cessional angular velocity vector take the following forms:

Ã =
�0

	1 + 	2� 0 − �1 + �	� 0

�1 + �1 + ���	� 0 �	 − �1 + ����
0 �� − 	� 0

� ,

�̃c = ��̃1,0, �̃3�T = �1 + 	2�−1/2��1 − 	�3,0,	�1 + �3�T.

�11�

Choosing 	= �1+���, the coefficient Ã23 vanishes in �11�
and the matrix Ã reduces to

Ã = �0�0 − 
 0


 0 0

0 − ��/
 0
� , �12�

where


 = �1 + �1 + ��2�2�1/2. �13�

By neglecting the terms of order O���� with ��1 and as-
suming that

�̃3 = �1 + ����1 + �3 = 0,

so that

�̃1 = �1 − 	�3 = �1 + �1 + ��2�2��1 = �1 + O��2� ,

we obtain the MBF described by the first matrix in Eqs. �7�
and �6� with ��=2�1=2�.

It is worthwhile to stress that the geometry of the oblate
spheroid does not provide in a trivial way the relevant pa-
rameter �e.g., zero oblateness for a circular cylinder� to re-
cover the MBF. A rotation of the system of coordinates is
needed to discard both the component of the precessional
angular velocity that is along the main angular velocity, and
one of the extra-diagonal components of the gradient matrix.
The choice of the base flow by Mahalov was also suggested
by Wiener et al. �14�, who studied experimentally the stabil-
ity of �horizontal� Taylor-Couette flow subject to an external

�vertical� Coriolis force. They showed that the Coriolis force
alters the flow field in generating an axial component for the
basic velocity.

If 	=�, as firstly stated by Kerswell �11�, the coefficient

Ã32 vanishes in �11�, and one recovers Eqs. �1.1� and �1.2� in
�11�. In addition, by neglecting the terms of order O���� with
��1 and assuming that �̃3=��1+�3=0, so that �̃1=�1
+O��2�, we recover the KBF described by the second matrix
in �7� and Eq. �6� �or Eq. �5.1� in �11�� with �1=�=��.

III. STABILITY ANALYSIS

A. Brief comments about effects of rotation and shear, coupled
or not

Solid-body rotation does not produce energy but generates
dispersive inertial waves, which can alter intercomponent
and interscale energy distribution by linear effects of phase
mixing and nonlinear dynamics �e.g., inertial wave turbu-
lence� �12,15�. On the other hand, the mean shear produces
energy but only algebraic growth is obtained in the absence
of rotation. An important effect of the shear is to quench
transport: this can be seen from the calculation of a turbulent
eddy-viscosity term from the RDT solution �16�, not to men-
tion the “sheltering effect” studied by Hunt in the context of
inhomogeneous turbulence. In the case of shear �rate S� ro-
tating �rate �� around its spanwise direction, exponential in-
stability is found for anticyclonic cases −1�� /S�0. The
relevance of a simple criterion that accounts only for produc-
tion of kinetic energy is explained by the role of pressure-
released modes �17�. Details of RDT can be found in �18,19�,
with recent applications in the context of astrophysics in
�16,20,21�. A crucial point in all cases with mean shear is the
possibility of promoting exponential growth by feeding the
vertical �cross-gradient� velocity component by means of a
coupled effect �rotation, stratification�, or even by nonlinear
redistribution terms. In the present case, the main difference
from other rotating shear flows is the fact that the mean
trajectories and related characteristic curves are no longer the
ones for the pure shear, which are rectilinear unbounded
curves, but are also affected by the main rotation, so that the
trajectories are ellipses and the eikonal equation has time-
periodic solutions. In this sense, we are closer to elliptical
flow instability, in which rotation is coupled with weak ad-
ditional irrotational strain than to the barotropic instability of
rotating shear. The equations of mean flow trajectories are
not given for the sake of brevity. They are closely related to
characteristic curves in wave space, comparing the trajectory
equation to the eikonal equation, changing �xi ,Xj ,Aij� into
�ki ,Kj ,−Aji�. Accordingly, the MBF trajectories, shown in
Fig. 2 are equivalent to KBF spectral characteristic curves,
and conversely �see Fig. 3 for KBF trajectories.�

B. Equations for disturbances

The solutions for the disturbances to the base flow are
found in the form of single plane waves with a time-
dependent wave vector,
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�u�x,t�,p�x,t�� = �û�k,t�, p̂�k,t��exp�ık�t� · x� . �14�

The following linear system of ordinary differential equa-
tions �ODEs� is found:

dûi

dt
+ 
in − 2

kikn

k2 �Anjûj + �
in −
kikn

k2 ��n1j�ûj = 0, �15�

in terms of û, once the pressure term is eventually solved in
order to satisfy k · û=0, according to the incompressibility
constraint �see, e.g., �15,18��. Linearity is implicit if a single-
mode disturbance is considered, because such a mode cannot
interact with itself. Only in the context of conventional RDT
ought linearization to be imposed as an assumption because
the disturbance is multimodal. As a key point to account for
advection by the base flow, the time derivative in the preced-
ing equation involves the time dependency of the wave vec-
tor, in accordance with the following �eikonal-type� wave
vector equation:

dk/dt = − ATk . �16�

C. Characteristic curves in wave space

For the MBF, the eikonal equation reduces to

k̇1 = − k2,

k̇2 = k1 + 2�k3,

k̇3 = 0,

with solutions

k3 = K3,

k1 + 2�k3 = �K1 + 2�K3�cos � − K2 sin � ,

k2 = �K1 + 2�K3�sin � + K2 cos � , �17�

where the capital letter K denotes the initial value, as X does
for the trajectories in Figs. 2 and 3.

In general, the inviscid RDT solutions depend on the ori-
entation, not on the modulus, of the wave vector. Conse-
quently, these solutions must be parametrized by two angles,
which are, for instance, the angles of the initial wave vector
K in a system of spherical coordinates. A better �simpler�
parametrization can be found here because the characteristic
lines �or “trajectories” in wave space� exhibit two invariants,
namely,

k3 = K3, �k1 + 2�k3�2 + k2
2 = �K1 + 2�K3�2 + K2

2, �18�

which define ellipses in wave space. In this case, a simpler
form of the characteristic lines is found if the wave numbers
are expressed in terms of the three independent variables k0,
� �combining the two previous invariants�, and t*,

k0 = K3, � = arctan
	K2
2 + �K1 + 2�K3�2

K3
� , �19�

k0 tan � = 	K1
2 + K2

2,

t* = �0t + arctan
 K2

K1 + 2�K3
� . �20�

Thus

k1 = k0�tan � cos t* − 2�� ,

k2 = k0 tan � sin t*,

k3 = k0. �21�

It is clear that k0 can be removed from consideration for
further stability analysis, because it affects only the modulus
of the wave vector; accordingly, only the single angular pa-
rameter � and the external parameter � are needed to analyze
the stability. Introduction of the variables k0 and � is not
relevant in the case k3=K3=0: This exception does not affect
the analysis of exponential instability, because there is mar-
ginal stability for K3=0.

For the KBF, the solutions of the eikonal equation display
the two invariants

k1
2 + k2

2 = K1
2 + K2

2, k3 + 2�k1 = K3 + 2�K1, �22�

defining ellipses. As for the MBF, the following simplified
form is recovered �Eq. �5.4� in Kerswell �11��:
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FIG. 2. Trajectories in physical space for the MBF at X3

=2�X1 and �=0.0–0.5 with increments of 0.1.
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FIG. 3. Trajectories in physical space for the KBF at �=0.1,
X2=0, and −1� �X3 /X1��9.
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k1 = k0 tan � cos t*,

k2 = k0 tan � sin t*,

k3 = k0�1 − 2� tan � cos t*� , �23�

with

t* = �0t + arctan
K2

K1
� = �0t + � ,

� = arctan
 	K1
2 + K2

2

K3 + 2�K1
� = arctan
 tan �

1 + 2� tan � cos �
� ,

k0 = k3 + 2�k1 = K3 + 2�K1,

k0 tan � = 	k1
2 + k2

2 = 	K1
2 + K2

2 = K sin � .

For convenience, the angles � �polar� and � �azimuthal� of K
in a system of polar-spherical coordinates of polar axis e3 are
used too.

The stability analysis here is obtained by solving an initial
value problem. In addition to the external parameter �, the
results of this analysis depend only on the initial orientation
of the wave vector, as the only characteristic of different
initial values for the disturbances. The single parameter � is
shown to give a parametrization of the orientation of the
initial wave vector that is simpler than the one in terms of the
two angles � and �, because of the existence of two invari-
ants in the characteristic curves �trajectories in Fourier
space�.

A more physical interpretation of the angular parameter �
can be offered as follows. In typical experiments in a rotating
tank with local forcing, cross-shaped structures, often called
Saint Andrew crosses, reflect the generation of inertial waves
by means of conical rays emanating from the forcing zone.
The angle, similar to �, that characterizes the cross-shaped
structure with respect to the axis of rotation, can be predicted
in equating the dispersion frequency, say �2� cos �, to the
forcing frequency �0, so that it is given by cos �
= ��0 / �2�� provided that �0�2�. Elliptical instability at
weak ellipticity can be explained by a similar, parametric,
resonance, when the dispersion frequency of an inertial wave
is approximately equal to the frequency of the periodic mo-
tion � of the wave vector resulting from the eikonal equa-
tion, so that cos �= �1 /2 is selected according to the stron-
gest resonance condition. In this case, growth of instability
results from the averaged �over a period� alignment of the
fluctuating vorticity with the principal axis of the weak ad-
ditional strain �see also �7,15� for more details.�

D. Use of a minimal number of components for the velocity
disturbances in wavespace

Equation �17� is a system of three linear ODEs, for û1, û2,
and û3, these three components being coupled by the condi-
tion k · û=0. One of the simplest and more systematic ways
to write the equations for a minimal number of dependent
variables is to project û in a local frame of reference

e�1� = k � n/�k � n�, e�2� = k � e�1�/k, e�3� = k/k , �24�

so that û has only two components,

û = u�1�e�1� + u�2�e�2�, �25�

and the incompressibility condition is implied. Of course, the
local frame, often called the Craya-Herring frame in the tur-
bulence community, is the local frame attached to a system
of polar-spherical coordinates for k with polar axis n. The
choice n=e3 is consistent with axial symmetry at vanishing
�, without being restricted to this case. Accordingly, Eq. �15�
yields the following system of two equations for u�1� and u�2�

�subsequently called “toroidal” and “poloidal” in reference to
their meaning in physical space �15��:

d

dt*
�u�1�

u�2� � + �m11 m12

m21 m22
�

m

�u�1�

u�2� � = �0

0
� .

�26�

General solutions of Eq. �26� can be written as

u���
„k�t�,t… = g���k,t,0�u����K,0� , �27�

in which the reduced Green’s function g�� �greek indices
take only the values 1 and 2� is governed by the same equa-
tion as u��� is, but with universal initial condition g�0�=I2,
where I2 is the 2�2 unit matrix.

E. Stability analysis: analytical results

For the MBF, the matrix m takes the following form:

m =
2

k
 0 − k3

�k3 − �k1� ��k2k3/k� � =
2

k
 0 − k0

�k0 − �k1� ��k2k3/k� � .

�28�

Trivial solutions of �26� are found if the wave vector is no
longer time dependent in �28�; these solutions gives purely
oscillating or constant motion and correspond to �=0 or
� /2, with

g11�t� = cos �t, g12�t� = �1 + 2�2�−1/2 sin �t ,

g21�t� = − �1 + 2�2�1/2 sin �t, g22�t� = cos �t , �29�

in which

� = 2�0
 k3
2

k2 − �
k1k3

k2 �1/2

= 2�0
1 + 2�2

1 + 4�2�1/2

in the first case, and

g11 = g22 = 1, g12 = 0, g21 = 2� sin��0t + �� �30�

in the second case.
For the KBF, the matrix m in �26� takes the form

m =
2

k
 0 − �k3 + 2�k1�

�k3 + �k1� ��k2k3/k� �
=

2

k
 0 − k0

�k0 − �k1� ��k2k3/k� � , �31�

in which the wave numbers are described by �23�. Similarly
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to the MBF case, simple solutions are found for �=0 or � /2,
as

g11 = g22 = cos �0t, g21 = − g12 = − sin �0t �32�

in the first case, and

g11 = 1, g12 = 0,

g21 = 2��1 + 4�2 cos2��0t + ���−1/2 sin��0t + �� ,

g22 = 
1 + 4�2 K1
2

K1
2 + K2

2�1/2

�1 + 4�2 cos2��0t + ���−1/2

�33�

in the second case. It should be remarked that, at ����1, the
solution �29� ��33�� reduces to �32� ��30��. The coincidence
of the stability analysis for both base flows at sufficiently
weak precession is confirmed as follows.

1. Stability analysis at sufficiently weak precession

When ��0,� /2 and ����1, the stability problem for
both the MBF and the KBF is governed by the following
Mathieu equation deduced from the system �27�, with �28�
and �31�,

d2Y

dt*2 + �a0
2 − 2�a1 cos t*�Y = 0, Y = �k/K�u�1�, �34�

a0
2 = 4 cos2 �, a1 = �3 − 2a0

2�cos � sin � , �35�

with more details in the Appendix. The dominant coefficient
in this equation is a0 which coincide with the nondimen-
sional dispersion frequency of inertial waves 2k1 /k
=2k cos � at weak �, displaying the precession instability as
a parametric instability of inertial waves. The stability prop-
erties of the Mathieu equation are well known �22�. For
small �, the solutions are generally bounded, except in the
vicinity of resonances defined by

a0
2 = 4 cos2 � = n2/4, n = 1,2,3,4, �36�

where the solutions are exponentially growing with a growth
rate of order �n. Equation �36� implies that there are four

instability bands that are centered at a0
2=0.25,1 ,9 /4,4, re-

spectively. However, since the width of the last three un-
stable bands is of O��n� with n�1, the Mathieu equation is
not able to determine whether instability exists near a0

2

=1 ,9 /4,4 for the original system �27�. Moreover, in contrast
to Eq. �36�, the solution �29� �or �32�� clearly shows that the
mode �=0, so that a0

2=4, is stabilizing. Consequently, Eq.
�36� characterizes only the subharmonic state �n=1� at suf-
ficiently small ��� �see the Appendix�. By using the power
statement

d

dt*
��û�2� = 2�û2û3,

obtained through the dot product of û with Eq. �15�, Ker-
swell �11� demonstrated that, in the limit of �→0, the maxi-
mal growth rate of the subharmonic instability is �

m
* /�

=5	15 /32. The above result can be recovered by considering
the stability properties of the Mathieu equation �see the Ap-
pendix�.

F. Numerical results using Floquet’s technique and discussion

The temporal behavior of the solutions is obtained using
Floquet theory allied to numerical computations. From
d /dt�Detg�+m��Detg=0, it is found that Detg=k /K, and
therefore is equal to 1 at any period. Consequently, the two
Floquet multipliers, which are the eigenvalues of g after a
period, are either real with the form �� ,1 /��, or are complex
conjugates lying on the unit circle. Accordingly, the only
quantity we need to know in order to compute the two rel-
evant eigenvalues is the trace of the matrix g after one pe-
riod. Instability, with a growth rate �*, is found for

��� = �g���2��� � 2, �* =
1

2�
ln
 ��� + 	�2 − 4

2
� .

In addition, the method allows simple generalization to
viscous flows, by adding the term �k2û in �15�, with � the
kinematic viscosity. The viscous solution is derived from the
inviscid one by multiplying by the factor
exp�−��0

t k2�t��dt��=exp�−2��
v
*�t*��, where

�

� � �

� � �

� � �

� � �
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� � �

� � 	

� � 
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�  �

�

FIG. 4. Instability bands delineated by neutral curves in the
�� , cos �� plane, MBF case. The dashed line indicates the inclina-
tion � of the largest growth rate.
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� � 


� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�  �

�

FIG. 5. Instability bands delineated by neutral curves in the
�� , cos �� plane, KBF case. The dashed line indicates the inclination
� of the largest growth rate.
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�v
*�2�� = E�1 + tan2 � + 4�2� �37�

for the MBF and

�v
*�2�� = E�1 + �1 + 2�2�tan2 �� �38�

for the KBF, E=�k0
2 /�0 being the Ekman number based on

the frequency �0. Therefore, in the viscous case, the curve of
marginal stability is characterized by �

t
*=�*−�

v
*=0, or

equivalently by ���=2 cosh�2��
v
*�.

The system �26� is integrated numerically over one period
using a fourth-order Runge-Kutta scheme with nondimen-
sional time step t*=10−4� to find �g��� for 0�cos ��1
and 0���1 /2.

Figures 4 and 5 show the neutral curves which correspond
to a constant �small� growth rate 10−5 where the horizontal
axis is ��0.5 and the vertical axis is cos �. The results for
the MBF are displayed in Fig. 4, and those for the KBF are
displayed in Fig. 5. In agreement with the numerical results
by Kerswell �11�, there are three unstable bands �labeled n
=1–3� emanating from the points cos �=0.25,0.50,0.75, re-
spectively, located on the �=0 axis. The subharmonic insta-
bility �n=1� that emanates from the point �0, 0.25�, in agree-
ment with Eq. �36�, is much the strongest and is extensive.
Figure 6 compares the subharmonic instability band in the
MBF with that in the KBF. As expected, for 0���0.1, the
subharmonic instability is the same for both the MBF and
KBF. However, for 0.1��, that in the KBF is larger, and its
maximal growth rate remains larger, too, as shown by Fig. 7.

While for the KBF both the second and the third instabili-
ties are very thin �so they reduce to the lines shown in Fig.
5�, for the MBF only the third instability is very thin. The
second instability band in the MBF case is less important
than the subharmonic one, but it is not as narrow as that in
the KBF case. As shown by Fig. 8 displaying the growth rate
�* versus cos � at �=0.5, the value of the maximal growth
rate of the second instability in the MBF case is not small
with respect to that of the subharmonic instability.

The viscous classical normal-mode analysis by Mahalov
shows that the transition between stability and instability is
characterized by �=0.158, in agreement with his full numeri-
cal simulations of the Navier-Stokes equations at Re
=�0�R2−R1�2 /�=300 and R1 /R2=0.5, where R1 and R2 are

the radii of the two rotating coaxial cylinders. Assuming that
such a result can be applied in the case of the present stabil-
ity analysis, for �=0.158, we determine numerically both �

m
*

and �m and we use the relation �
m
* =�

v
* with Eq. �37� or �38�

to deduce the value of the Ekman number: E=5.73�10−3 for
the MBF and 6.17�10−3 for the KBF. Figure 9 shows the
variation of �

m
* and �

v
*��m� at E=5.73�10−3 versus �, dis-

playing stability for 0���0.158 and instability for �
�0.158.

IV. CONCLUSIONS AND PERSPECTIVES

A precessing rotating flow with main angular velocity �
perpendicular to the axis of precession is considered in order
to define its limiting case as an extensional base flow, and to
perform its stability analysis for disturbances to it, which can
be expressed in terms of advected Fourier modes. This study
has reconciled the different approaches by Mahalov �3� and
Kerswell �11�. Although it was conjectured for a long time
that a mean �base� shear flow is induced as a by-product by
only the � and �c angular velocities, this shear is not
uniquely determined here and two different cases have to be
considered. On the one hand, the link of this shear to the
gyroscopic torque has been specified in Eq. �4�, using admis-
sibility conditions, whereas the right-hand sides of Eqs. �28�
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FIG. 6. Subharmonic instability band in the cases of MBF and
KBF.
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FIG. 7. Variation of �
m
* /� �maximal growth rate normalized by

�� versus � for the MBF and KBF �dashed line� cases. In the limit
�→0, one has �

m
* /�=5	15 /32 �see �11��.
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FIG. 8. Variation of the growth rate �* of the unstable bands
versus cos � at �=0.2 for the MBF and KBF.

PRECESSING ROTATING FLOWS WITH ADDITIONAL… PHYSICAL REVIEW E 79, 036303 �2009�

036303-7



and �31� exhibit the same matrix for the analysis of distur-
bances. On the other hand, the shear–absolute-vorticity inter-
action is not the same, looking again at Eq. �4�, and Eqs. �28�
and �31� can differ through implicit time-dependent terms
that involve the direction of the wave vector. Both cases,
denoted the MBF and KBF, can be derived from the case of
the precessing ellipsoid, and one can conjecture that bound-
ary conditions, which are not accounted for in our study, can
eventually determine which shear flow is “chosen” by an
actual precessing flow. It has been shown that the stability
analysis gives the same result for both flows at small
Poincaré parameter � �with �c=−��0� regarding growth
rates and unstable bands, provided that a more intrinsic sys-
tem of variables �especially �, in Eq. �19� or �23�, instead of
the polar angle� is used. Significant differences appear, how-
ever, at larger �’s. It is expected that the analysis of these
analogies and differences will be even more important in a
fully nonlinear DNS study, which appears as a natural con-
tinuation of our RDT analysis. The present study is also a
good opportunity to show the relevance of admissibility con-
ditions and to stress the drawbacks of RDT and DNS studies
that do not respect these conditions �e.g., mean shear flow
rotating about its vertical axis �23�, time-dependent periodic
mean shear �24��. The present study will be extended toward
pseudospectral DNS in advected coordinates �Rogallo’s tech-
nique �25��. This technique can incorporate exact mean flow
trajectories �elliptical with periodic motion here�, whereas it
amounts to reintroducing quadratic nonlinear terms such as

uiuj
ˆ in an equation of type �15�. Although these future pseu-

dospectral DNS cannot afford “true” boundary conditions,
with some related physical events �ejection of mushroom-
shaped eddies from the wall in �2��, some comparisons with
structure formation and evolution could be made, as in �26�.
For instance, the asymmetry between cyclonic and anticy-
clonic vortex structures will be investigated in a qualitative
and a quantitative way �see also �27�� in both DNS and ex-
perimental results, for the precessing flow case.

APPENDIX

For the MBF, system �26� can be rewritten as

k
du�1�

dt*
= 2k3u�2�,

d

dt*
�ku�2�� = − 2�k3 − �k1�u�1�.

where the relation �1 /k�dk /dt*=2�k2k3 /k2 has been used. An
alternative formulation of the last system as a single second-
order equation yields,

k2d2u�1�

dt*2 + 4�k2k3
du�1�

dt*
+ �4k3

2 − 4�k1k3�u�1� = 0,

and the substitution Y = �k /K�u�1� transforms the above equa-
tion to

d2Y

dt*2 + V�t*�Y = 0, �A1�

where

V�t*� = 4
k3

2

k2 − 6�
k1k3

k2 − 4�2k3
2

k2
1 −
k2

2

k2�� ,

which is a Hill equation since the potential is periodic with
period 2�. When 0���1, the potential in �A1� can be ex-
pressed by a truncated power series in �,

4k3
2/k2 = �4 cos2 ���1 + 4� sin � cos � cos t*� + O��2� ,

− 6�k1k3/k2 = − 6� cos � sin � cos t* + O��2� .

If terms of O���� with ��1 are neglected, Eq. �A1� reduces
to a Mathieu equation �i.e., Eq. �34��,

d2Y

dt*2 + �a0
2 − 2�a1 cos t*�Y = 0,

where a0
2 and a1 are given by Eq. �35�. For the KBF, the

stability problem is also described by �A1� with the potential

V�t*� = 4
k0

2

k2 − 4�
k1k0

k2 − 2�
k1k3

k2 − 4�2k2
2

k2
1 −
k3

2

k2� ,

which can be expressed by truncated power series in �,

V�t*� = a0
2 − 2�a1 cos t* + O��2� ,
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FIG. 9. Variation of inviscid maximal growth �
m
* and viscous

growth �
v
* �Eq. �27� with E=5.73�10−3� rates versus � for the case

of MBF. The value E=5.73�10−3 has been deduced assuming that
the transition between stability and instability occurs at �=0.158
�3�. For �

m
* ��

v
*, viscous effects delay the instability.
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where a0 and a1 are also described by Eq. �35�. If terms of
O���� with ��1 are neglected, one recovers Eq. �34�, signi-
fying that, at ��1, there is the same stability problem for
both the MBF and KBF, in agreement with the analysis pre-
sented in Sec. III. On the other hand, Eq. �34� implies that
the width of the subharmonic instability is �a0

2−1 /4�� ��a1�,

and its maximum growth rate �
m
* is �in t* units�

�
m
* = ��a1�n=1 = ����3 − 2a0

2�cos � sin ���n=1 =
5	15

32
��� , �A2�

in the limit of �→0 �see, e.g., �28��
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